Research
Lagrangian multiforms, integrability, and quantisation
Much of my current work is rooted in the \(r\)matrix approach to integrable systems and the theory of Lagrangian multiforms. Together with my doctoral supervisor Dr. Vincent Caudrelier and our collaborators, I am developing a framework for systematically constructing Lagrangian multiforms, objects that provide a variational description of integrable hierarchies through a generalised action and a variational principle. Incorporating ingredients and ideas from the Hamiltonian framework for integrability – in particular, the theory of Lie dialgebras – we have achieved this for a large class of finitedimensional integrable systems. At the moment, I am working towards incorporating affine models into our framework. A related longishterm goal is to use our construction together with the path integral formalism to quantise integrable field theories in a covariant manner.
Causal set theory
As a visiting scholar at the Raman Research Institute, Bengaluru, I worked on causal set theory, an approach to quantum gravity that postulates that spacetime is fundamentally discrete and replaces the spacetime continuum with locally finite posets. If one were to randomly pick a poset from the space of all finite posets, it would far more likely be nonmanifoldlike. This poses a challenge to causal set theory, since one expects continuumlike dynamics to arise in its classical limit. A result from my collaboration with Dr. Abhishek Mathur and Prof. Sumati Surya helped establish that certain classes of nonmanifoldlike causal sets are suppressed in the causal set path sum despite being more typical that manifoldlike ones, making the emergence of manifoldlike behavior possible without any restrictions.
Black holes, information scrambling, and quantum chaos
For my MS thesis work done under the supervision of Prof. Spenta Wadia at the International Centre for Theoretical Sciences (ICTSTIFR), Bengaluru, I tried to better understand the scrambling of information by black holes using ideas from holography, quantum information and chaotic dynamics. I focused, in particular, on the SachdevYeKitaev (SYK) model, a strongly coupled, quantum manybody system that is maximally chaotic, nearly conformally invariant, and exactly solvable, properties that make it interesting from the point of view of holography. A new result from my MS project was a derivation of the effective action of a charged version of the SYK model achieved by reducing the original theory of Majorana fermions to a theory of bilocal fields.
Preprints and publications

arXiv