MaPLe

The Mathematical Physics at Leeds Seminar Series is aimed at bringing together researchers at any level from across the University of Leeds — from both mathematics and physics departments alike — to give talks on themes in mathematical physics, broadly construed. Talks are held every other Tuesday from 11:00 to 12:00 in the MALL on Level 8 in the main building of the School of Mathematics.

The series is being organised by Linden Disney-Hogg and Anup Anand Singh. Slides/notes from the talks will be made available on the MaPLe Teams chat. If you would like to give a seminar or want to be added to the chat and the mailing list, just drop an email to a.l.disney-hogg[at]leeds.ac.uk or mmaasi[at]leeds.ac.uk.


February 20, 2024 | 11:00-12:00

Path integral formulation of stochastic processes
Steve Fitzgerald
School of Mathematics
University of Leeds

Abstract Traditionally, stochastic processes are modelled one of two ways: a continuum Fokker-Planck approach, where a PDE is solved to determine the time evolution of the probability density, or a Langevin approach, where the SDE describing the system is sampled, and multiple simulations are used to collect statistics. There is also a third way: the functional or path integral. Originally developed by Wiener in the 1920s to model Brownian motion, path integrals were famously applied to quantum mechanics by Feynman in the 1950s. However, they also have much to offer to classical stochastic processes (and statistical physics).

In this talk, I will introduce the formalism at a physicist’s level of rigour, and focus on determining the dominant contribution to the path integral when the noise is weak. There exists a remarkable correspondence between the most-probable stochastic paths and Hamiltonian dynamics in an effective potential [1, 2]. I will then discuss some applications as time permits, including reaction pathways conditioned on finite time [2]. We demonstrate that the most probable pathway at a finite time may be very different from the usual minimum energy path used to calculate the average reaction rate.

[1] Ge, Hao, and Qian, Hong. Int. J. Mod. Phys. B 26.24 1230012 (2012)
[2] Fitzgerald, Steve, et al. J. Chem. Phys. 158.12 (2023)

March 05, 2024 | 11:00-12:00

The geodesic approximation and the \(L^2\)-geometry of vortex moduli spaces
Gautam Chaudhuri
School of Mathematics
University of Leeds

Abstract The geodesic approximation is a method by which the low-energy/non-relativistic dynamics of solitons in a classical field theory are modelled by geodesics on a related moduli space. In practical terms, this reduces the problem of understanding soliton dynamics to studying the Riemannian geometry of the associated moduli space, often a more tractable problem. The moduli space constructed is also an object worthy of study in its own right, possessing canonical geometric structures beyond the Riemannian metric which can affect the soliton dynamics.

In this talk, I will introduce the geodesic approximation in the particular context of the dynamics of vortices in Abelian Yang-Mills-Higgs theory. We will begin with a brief overview of Abelian YMH theory and the existence of vortex solitons, moving onto the existence and structure of static vortex moduli spaces, and the validity of the geodesic approximation in the low-energy regime. The second half of the talk will focus on finer details about the vortex moduli space including the construction of the L²-metric and some key geometric properties. Time permitting, we will mention some new results on how the vortex metric can itself be approximated in certain parametric limits.

March 19, 2024 | 11:00-12:00

Beyond the eigenstate thermalisation hypothesis: deep thermalisation in constrained quantum systems
Tanmay Bhore
School of Physics and Astronomy
University of Leeds

Abstract The Eigenstate Thermalisation Hypothesis (ETH) is a powerful conjecture that explains the emergence of thermodynamics in isolated quantum systems. By postulating a connection between random matrix ensembles and deterministic unitary dynamics, ETH postulates that the reduced density matrix of a generic quantum system evolves to the universal form of a Gibbs ensemble. Then, "thermalisation" occurs as entanglement builds up between a subsystem and its complement.

Performing measurements on a complementary subsystem, however, can reveal finer nuances in the system's ability to thermalise. This concept, dubbed as "deep thermalisation", promises to generalize ETH and has been recently realised in experiments on Rydberg atom arrays [1, 2]. In this talk, I will give a brief introduction to ETH and introduce this new formalism. I will also present the idea that systems which look "thermal" in the ETH sense can be highly "non-thermal" when probed through the lens of deep thermalisation [3]. This finding will be illustrated on several constrained models that describe slow relaxation in quantum glasses and quantum many-body scars in Rydberg atom arrays.

[1] https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010311
[2] https://www.nature.com/articles/s41586-022-05442-1
[3] https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.104317

April 30, 2024 | 11:00-12:00

TBA
Vincent Caudrelier
School of Mathematics
University of Leeds